代表性论文
[1] Y. Zhu, et al., "Tensile strained nano-scale Ge/In0.16Ga0.84As heterostructure for tunnel field-effect transistor", ACS Appl. Mater. Interfaces 6, 4947 (2014).
[2]Y. Zhu, et al., “Growth, strain relaxation properties and high-κ dielectric integration of mixed-anion GaAs1-ySby metamorphic materials”, J. Appl. Phys. 116, 134304 (2014).
[3]Y. Zhu, et al, "Reliability studies on high-temperature operation of mixed As/Sb staggered gap tunnel FET material and devices", IEEE Trans. Device Mat. Rel. 14, 246 (2014).
[4]Y. Zhu, et al, “X-ray photoelectron spectroscopy analysis and band offset determination of CeO2 deposited on epitaxial (100), (110) and (111)Ge”, J. Vac. Sci. Technol. B 32, 011217 (2014).
[5]Y. Zhu and M. K. Hudait (Invited), "Low-power tunnel field effect transistors using mixed As and Sb based heterostructures", Nanotechnology Reviews 2, 637 (2013).
[6]Y. Zhu, et al, "Structural, morphological, and defect properties of metamorphic In0.7Ga0.3As/GaAs0.35Sb0.65 p-type tunnel field effect transistor structure grown by molecular beam epitaxy", J. Vac. Sci. Technol. B 31, 041203 (2013).
[7]Y. Zhu, et al, “Band offset determination of mixed As/Sb type-II staggered gap heterostructure for n-channel tunnel field effect transistor application”, J. Appl. Phys. 113, 024319 (2013).
[8]Y. Zhu, et al, “Defect assistant band alignment transition from staggered to broken gap in mixed As/Sb tunnel field effect transistor heterostructure”, J. Appl. Phys. 112, 094312 (2012).
[9]Y. Zhu, et al, “Structural properties and band offset determination of p-channel mixed As/Sb type-II staggered gap tunnel field-effect transistor structure”, Appl. Phys. Lett. 101, 112106 (2012).
[10]Y. Zhu, et al, “Role of InAs and GaAs terminated heterointerfaces at source/channel on the mixed As-Sb staggered gap tunnel FET structures grown by molecular beam epitaxy”, J. Appl. Phys. 112, 024306 (2012).
[11]Y. Zhu, et al, “Study of metamorphic InGaAs/GaAs quantum well laser materials grown on GaAs substrate by molecular beam epitaxy”, Optoelectronics Lett. 7, 325 (2011).
[12]Y. Zhu, et al, “GaAs-based long-wavelength InAs bilayer quantum dots grown by molecular beam epitaxy”, J. Semiconductors 32, 083001 (2011).
[13]M. Clavel, P. Goley, N. Jain, Y. Zhu, et al., “Strain-Engineered Biaxial Tensile Epitaxial Germanium for High- Performance Ge/InGaAs Tunnel Field-Effect Transistors”, IEEE J. Electron Devices Soc. 3, 184 (2015).
[14]M. K Hudait, M. Clavel, Y. Zhu, et al., “Integration of SrTiO3 on Crystallographically Oriented Epitaxial Germanium for Low-Power Device Applications”, ACS Appl. Mater. Inter. 7, 5471 (2015).
[15]J. S. Liu, Y. Zhu, et al., “Heterointerface engineering of broken-gap InAs/GaSb multilayer structures”, ACS Appl. Mater. Inter. 7, 2512 (2015).
[16]M. K. Hudait, Y. Zhu, et al., “Mixed-anion GaAs1−ySby graded buffer heterogeneously integrated on Si by molecular beam epitaxy”, Appl. Phys. Express 8, 025501 (2015).
[17]M. K. Hudait, M. Clavel, P. Goley, N. Jain, Y. Zhu, “Heterogeneous integration of epitaxial Ge on Si using AlAs/GaAs buffer architecture: Suitability for low-power fin field-effect transistors”, Scientific reports (2014).
[18]B. Rajamohanan, D. Mohata, Y. Zhu, et al, “Design, fabrication and analysis of P-channel Arsenide/Antimonide Hetero-junction Tunnel Transistors”, J. Appl. Phys. 115, 044502 (2014).
[19]N. Jain, Y. Zhu, et al, “Interfacial band alignment and structural properties of nanoscale TiO2 high-k gate dielectric for integration with epitaxial crystallographic oriented germanium”, J. Appl. Phys. 115, 024303 (2014).
[20]M. Li, Y. Yu, J. He, L. Wang, Y. Zhu, et al, “In situ accurate control of 2D-3D transition parameters for growth of low-density InAs/GaAs self-assembled quantum dots”, Nanoscale Res. Lett. 8, 86 (2013).
[21]M. K. Hudait, Y. Zhu, et al, “BaTiO3 Integration with Nanostructured Epitaxial (100), (110), and (111) Germanium for Multifunctional Devices”, ACS Appl. Mater. Interfaces 5, 11446 (2013).
[22]M. K. Hudait, Y. Zhu, et al, "Quasi-zero lattice mismatch and band alignment of BaTiO3 on epitaxial (110)Ge", J. Appl. Phys. 114, 024303 (2013).影响因子:2.546
[23]J. Wang, G. Wang, Y. Xu, J. Xing, W. Xiang, B. Tang, Y. Zhu, et al, “Molecular beam epitaxy growth of high electron mobility InAs/AlSb deep quantum well structure”, J. Appl. Phys. 114, 013704 (2013).
[24]M. K. Hudait, Y. Zhu, et al, "Structural and band alignment properties of Al2O3 on epitaxial Ge grown on (100), (110) and (111)A GaAs substrates by molecular beam epitaxy", J. Appl. Phys. 113, 134311 (2013).
[25]M. K. Hudait and Y. Zhu, "Energy band alignment of atomic layer deposited HfO2 oxide film on epitaxial (100)Ge, (110)Ge and (111)Ge layers", J. Appl. Phys. 113, 114303 (2013).
[26]M. K. Hudait, Y. Zhu, et al, "Ultra-high frequency photoconductivity decay in GaAs/Ge/GaAs double heterostructure grown by molecular beam epitaxy", Appl. Phys. Lett. 102, 093119 (2013).
[27]M. K. Hudait, Y. Zhu, et al, "Energy band alignment of atomic layer deposited HfO2 on epitaxial (110)Ge grown by molecular beam epitaxy", Appl. Phys. Lett. 102, 093109 (2013).
[28]M. K. Hudait, Y. Zhu, et al,"Structural, morphological, and band alignment properties of GaAs/Ge/GaAs heterostructures on (100), (110) and (111)A GaAs substrates", J. Vac. Sci. Technol. B 31, 011206 (2013).
[29]M. K. Hudait, Y. Zhu, et al, "In-situ grown Ge in an arsenic-free environment for GaAs/Ge/GaAs heterostructures on off-oriented (100)GaAs substrates using molecular beam epitaxy", J. Vac. Sci. Technol. B 30, 051205 (2012).
[30]Y. Yu, M. Li, J. He, Y. Zhu, et al, “Photoluminescence study of low density InAs quantum clusters grown by molecular beam epitaxy”, Nanotechnology 23, 065706 (2012).
[31]J. F. He, H. L. Wang, X. J. Shang, M. F. Li, Y. Zhu, et al, “GaAs-based long-wavelength InAs quantum dots on multi-step-graded InGaAs metamorphic buffer grown by molecular beam epitaxy”, J. Phys. D 44, 335102 (2011).
[32]X. J. Shang, J. F. He, H. L. Wang, M. F. Li, Y. Zhu, et al, “Effect of built-in electric field in photovoltaic InAs quantum dot embedded GaAs solar cell”, Appl. Phys. A 103, 335 (2011).
[33]J. He, X. Shang, M. Li, Y. Zhu, et al, “Influence of growth temperatures on the quality of InGaAs/GaAs quantum well structure grown on Ge substrate by molecular beam epitaxy”, J. Semiconductors 32, 043004 (2011).
[34]J. F. He, Z. C. Niu, X. Y. Chang, H. Q. Ni, Y. Zhu, et al, “Molecular beam epitaxy growth of GaAs on an offcut Ge substrate”, Chinese Physics B 20, 018102 (2011).
专利
1. US Patent 9679762, “Access Conductivity Enhanced High Electron Mobility Transistor”, 2015-03.
2. US Patent 11038080, “Thin-film semiconductor optoelectronic device with textured front and/or back surface prepared from etching”,2021-06